学术活动
热点文章
 
当前位置: 首页>>学术活动>>正文
  • 理学院数理讲坛(2018年第33讲)
  • 发布时间:2018年07月12日 14:48 作者: 点击:[]
  • 理学院数理讲坛2018年第33讲)

    报告题目:Characterization of Intersecting Families of Maximum Size in PSL(2,q)

    报告人: 向青  教授

    单  位University of Delaware

    报告时间:2018年7月16日(星期一9:00-10:00

    报告地点:阳明学院303

    报告摘要:

    The Erdos-Ko-Rado (EKR) theorem is a classical result in extremal set theory. It states that when , any family of k-subsets of an n-set X, with the property that any two subsets in the family have nonempty intersection, has size at most  ; equality holds if and only if the family consists of all k-subsets of X containing a fixed point.

    Here we consider EKR type problems for permutation groups. In particular, we focus on the action of the 2-dimensional projective special linear group PSL(2, q) on the projective line PG(1, q) over the finite field , where q is an odd prime power. A subset S of PSL(2, q) is said to be an intersecting family if for any ,there exists an element  such that .It is known that the maximum size of an intersecting family in PSL(2, q) is .  We prove that all intersecting families of maximum size are cosets of point stabilizers for all odd prime powers .

    报告人简介:

    向青教授,现为美国特拉华(Delaware)大学教授、国家海外杰出青年科学基金获得者、国际组合数学及其应用协会Fellow。主要研究方向为组合数学,利用深刻的代数和数论工具来研究组合设计、有限几何、编码和加法组合中的问题。现为国际组合数学界权威SCI期刊《The Electronic Journal of Combinatorics》的主编,同时担任《Journal of Combinatorial Designs》、《Designs, Codes and Cryptography》、《Journal of Combinatorics and Number Theory》等SCI期刊的编委。曾被授予由国际组合数学及其应用协会颁发的杰出青年学术成就奖—“Kirkman Medal”。在国际组合数学高级别杂志《J. Combin. Theory Ser. A》、《Trans. Amer. Math. Soc.》、《IEEE Trans. Inform. Theory》等期刊上发表学术论文80余篇。主持完成美国国家自然科学基金、美国国家安全局科研项目等科研项目10余项。

    上一条:理学院数理讲坛(2018年第34讲) 下一条:理学院数理讲坛(2018年第32讲)

    关闭